Health Library
Osteosarcoma And Undifferentiated Pleomorphic Sarcoma Of Bone Treatment (PDQ®): Treatment - Health Professional Information [NCI]
- General Information About Osteosarcoma and Undifferentiated Pleomorphic Sarcoma (UPS) (Formerly Called Malignant Fibrous Histiocytoma [MFH]) of Bone
- Genomics of Osteosarcoma
- Cellular Classification of Osteosarcoma and UPS of Bone
- Staging and Site Information for Osteosarcoma and UPS of Bone
- Treatment Option Overview for Osteosarcoma and UPS of Bone
- Special Considerations for the Treatment of Children With Cancer
- Treatment of Localized Osteosarcoma and UPS of Bone
- Treatment of Osteosarcoma and UPS of Bone With Metastatic Disease at Diagnosis
- Treatment of Recurrent Osteosarcoma and UPS of Bone
- Latest Updates to This Summary (12 / 02 / 2024)
- About This PDQ Summary
General Information About Osteosarcoma and Undifferentiated Pleomorphic Sarcoma (UPS) (Formerly Called Malignant Fibrous Histiocytoma [MFH]) of Bone
Disease Overview
Osteosarcoma occurs predominantly in adolescents and young adults. Review of data from the National Cancer Institute's National Childhood Cancer Registry resulted in an estimated osteosarcoma incidence rate of 5.4 cases per 1 million each year in people aged 0 to 19 years and 4 cases per 1 million each year in people younger than 40 years.[1] The U.S. Census Bureau estimated that there were 82 million people between the ages of 0 and 19 years, resulting in an incidence of roughly 440 cases per year in this age group.
Osteosarcoma accounts for approximately 5% of childhood tumors. In children and adolescents, more than 50% of these tumors arise from the long bones around the knee. Osteosarcoma is rarely observed in soft tissue or visceral organs. There appears to be no difference in presenting symptoms, tumor location, and outcome for younger patients (<12 years) compared with adolescents.[2,3]
Two trials conducted in the 1980s were designed to determine whether chemotherapy altered the natural history of osteosarcoma after surgical removal of the primary tumor. The outcome of these patients recapitulated the historical experience before 1970. More than one-half of these patients developed metastases within 6 months of diagnosis, and overall, approximately 90% developed recurrent disease within 2 years of diagnosis.[4] Overall survival (OS) for patients treated with surgery alone was statistically inferior.[5] The natural history of osteosarcoma has not changed over time, and fewer than 20% of patients with localized, resectable primary tumors treated with surgery alone can be expected to survive free of relapse.[4,6]; [7][Level of evidence A1]
In 2013, the World Health Organization (WHO) published an update to the Classification of Tumors of Soft Tissue and Bone.[8] They removed the term malignant fibrous histiocytoma (MFH) and replaced it with undifferentiated pleomorphic sarcoma (UPS). This type of sarcoma is much more common in soft tissues. However, it does arise in bone. In bone, it has features that are histologically similar to osteosarcoma, but it does not produce osteoid. Most of the literature describing the clinical behavior and response to therapy for this histology in bone was published before the 2013 WHO update, and a search for UPS of bone will not retrieve these articles. The citations in this summary appear with their titles as published. Therefore, many references will describe MFH of bone, a condition now called UPS of bone.
Diagnostic Evaluation
Osteosarcoma can be diagnosed by core needle biopsy or open surgical biopsy. It is preferable that the biopsy be performed by a surgeon skilled in the techniques of limb sparing (removal of the malignant bone tumor without amputation and replacement of bones or joints with allografts or prosthetic devices). In these cases, the original biopsy incision placement is crucial. Inappropriate alignment of the biopsy or inadvertent contamination of soft tissues can render subsequent limb-preserving reconstructive surgery impossible.
Prognostic Factors
Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2020, childhood cancer mortality decreased by more than 50%.[1,9,10] For osteosarcoma, the 5-year relative survival rate increased over the same time from 40% to 72% in children younger than 15 years and from 56% to approximately 71% in adolescents aged 15 to 19 years. However, there has been no substantial improvement since the 1980s.[1,11]
In general, prognostic factors for osteosarcoma have not been helpful in identifying patients who might benefit from treatment intensification or who might require less therapy while maintaining an excellent outcome.
Factors that may influence outcome include the following:[12]
- Primary tumor site.
- Size of the primary tumor.
- Presence of clinically detectable metastatic disease.
- Surgical resectability of primary tumor.
- Degree of tumor necrosis after administration of neoadjuvant chemotherapy.
- Age and sex.
- Other possible prognostic factors.
Primary tumor site
The site of the primary tumor is a significant prognostic factor for patients with localized disease. Among extremity tumors, distal sites have a more favorable prognosis than do proximal sites. Axial skeleton primary tumors are associated with the greatest risk of progression and death, primarily related to the inability to achieve a complete surgical resection.
Prognostic considerations for the axial skeleton and extraskeletal sites are as follows:
- Pelvis: Pelvic osteosarcomas make up 7% to 9% of all osteosarcomas. Survival rates for patients with pelvic primary tumors are 20% to 47%.[13,14,15] Complete surgical resection is associated with a positive outcome for osteosarcoma of the pelvis in some cohorts of patients.[13,16]
- Craniofacial/head and neck: In patients with craniofacial osteosarcoma, those with primary sites in the mandible and maxilla have a better prognosis than do patients with other primary sites in the head and neck.[17,18,19] For patients with osteosarcoma of craniofacial bones, complete resection of the primary tumor with negative margins is essential for cure.[20,21,22] When treated with surgery alone, patients who have osteosarcoma of the head and neck have a better prognosis than those who have appendicular lesions. However, surgery alone without adjuvant therapy is not recommended for high-grade osteosarcoma of the head and neck.
Despite a relatively high rate of inferior necrosis after neoadjuvant chemotherapy, fewer patients with craniofacial primary tumors develop systemic metastases than do patients with osteosarcoma originating in the extremities. This may be the result of the inclusion of patients with lower-grade tumors in the cohorts reported.[23,24,25]
A meta-analysis concluded that systemic adjuvant chemotherapy improves the prognosis for patients with osteosarcoma of the head and neck, while small series have not shown such a benefit.[23,24,25] Another large meta-analysis detected no benefit of chemotherapy for patients with osteosarcoma of the head and neck, but suggested that incorporating chemotherapy into the treatment plan for patients with high-grade tumors may improve survival.[22] A retrospective analysis identified a trend toward better survival in patients with high-grade osteosarcoma of the mandible and maxilla who received adjuvant chemotherapy.[22,26]
Radiation therapy was found to improve local control, disease-specific survival, and OS in a retrospective study of patients with osteosarcoma of the craniofacial bones who had positive or uncertain margins after surgical resection.[27][Level of evidence C1] Radiation-associated craniofacial osteosarcomas are generally high-grade lesions, usually fibroblastic, and tend to recur locally with a high rate of metastasis.[28]
- Extraskeletal: Osteosarcoma in extraskeletal sites is rare in children and young adults. With current combined-modality therapy, the outcome of patients with extraskeletal osteosarcoma appears to be similar to that of patients with primary tumors of bone.[29]
Size of the primary tumor
In some series, patients with larger tumors appeared to have a worse prognosis than patients with smaller tumors.[12,30,31] Tumor size has been assessed by longest single dimension, cross-sectional area, or estimate of tumor volume; all assessments have correlated with outcome.
Elevated serum lactate dehydrogenase (LDH), which also correlates with poorer outcome, is a likely surrogate for tumor volume.[14]
Presence of clinically detectable metastatic disease
Patients with localized disease have a much better prognosis than patients with overt metastatic disease. As many as 20% of patients have radiographically detectable metastases at diagnosis, with the lung being the most common site.[32] The prognosis for patients with metastatic disease appears to be determined largely by site(s) of metastases, number of metastases, and surgical resectability of the metastatic disease.[33,34]
- Site of metastases: Prognosis appears more favorable for patients with fewer pulmonary nodules and for those with unilateral rather than bilateral pulmonary metastases.[33] Not all patients with suspected pulmonary metastases at diagnosis have osteosarcoma confirmed at the time of lung resection. In one large series, approximately 25% of patients had exclusively benign lesions removed at the time of surgery.[34]
- Number of metastases: Patients with skip metastases (at least two discontinuous lesions in the same bone) have been reported to have inferior prognoses.[35] However, an analysis of the German Cooperative Osteosarcoma Study Group (COSS) suggests that skip lesions in the same bone do not confer an inferior prognosis if they are included in planned surgical resection. Skip metastasis in a bone other than the primary bone should be considered systemic metastasis.[36]
Historically, metastasis across a joint was referred to as a skip lesion, but subsequent classification by the American Joint Committee on Cancer excluded such lesions as skip lesions.[37] They might be considered hematogenous spread and have a worse prognosis.[36]
Patients with multifocal osteosarcoma (defined as multiple bone lesions without a clear primary tumor) have an extremely poor prognosis.[38,39]
- Surgical resectability of metastases: Patients who have complete surgical ablation of the primary and metastatic tumor (when confined to the lung) after chemotherapy may attain long-term survival, although overall event-free survival (EFS) rates remain about 20% to 30% for patients with metastatic disease at diagnosis.[33,34,40,41] Patients with metastatic osteosarcoma were eligible for the European and American Osteosarcoma Study (EURAMOS) only if they had disease that was potentially resectable. Although the patients with metastatic disease had an overall 5-year EFS rate of only 28%, those who achieved a complete surgical remission at all sites (3–6 months after diagnosis) had a 5-year EFS rate of 64% and an OS rate of 79%.[31]
Surgical resectability of the primary tumor
Resectability of the tumor is a critical prognostic feature. Complete resection of the primary tumor and any skip lesions with adequate margins is generally considered essential for cure. For patients with axial skeletal primary tumors who either do not undergo surgery for their primary tumor or who undergo surgery that results in positive margins, radiation therapy may improve survival.[16,42]
A retrospective review of patients with craniofacial osteosarcoma performed by the cooperative German-Austrian-Swiss osteosarcoma study group reported that incomplete surgical resection was associated with inferior survival probability.[17][Level of evidence C1] In a European cooperative study, the size of the margin was not significant. However, prognosis was better when both the biopsy and resection were performed at a center with orthopedic oncology experience.[14]
Degree of tumor necrosis after neoadjuvant chemotherapy
Most treatment protocols for osteosarcoma use an initial period of systemic chemotherapy before definitive resection of the primary tumor (or resection of sites of metastases). The pathologist assesses necrosis in the resected tumor. Patients with at least 90% necrosis in the primary tumor after induction chemotherapy have a better prognosis than do patients with less necrosis.[30] Patients with less necrosis (<90%) in the primary tumor after initial chemotherapy have a higher rate of recurrence within the first 2 years than do patients with a more favorable amount of necrosis (≥90%).[43]
Less necrosis should not be interpreted to mean that chemotherapy has been ineffective. Cure rates for patients with little or no necrosis after induction chemotherapy are much higher than cure rates for patients who receive no chemotherapy. The EFS rate for patients who receive no adjuvant chemotherapy is approximately 11%.[44] Many large published series of patients treated with chemotherapy have reported EFS rates of 40% to 50% for patients with little or no necrosis in the primary tumor after initial systemic chemotherapy.[45,46,47] A review of two consecutive prospective trials performed by the Children's Oncology Group showed that histological necrosis in the primary tumor after initial chemotherapy was affected by the duration and intensity of the initial period of chemotherapy. More necrosis was associated with better outcome in both trials, but the magnitude of the difference between patients with more and less necrosis was diminished with a longer and more intensive period of initial chemotherapy.[48][Level of evidence B1]
Age and sex
Patients in the older adolescent and young adult age group, typically defined as age 18 to 40 years, tend to have a worse prognosis. In addition, male sex has been associated with a worse prognosis.[31,49,50] Compared with the other prognostic factors listed, both age and sex have a relatively minor impact on outcome.
Impact of time on prognostic factors
An analysis of the EURAMOS found that the predictive power of initial prognostic factors modify with time.[51] They applied a landmarking approach to 1,965 patients. The results showed that local recurrence and new metastases negatively affected 5-year OS (local recurrence hazard ratio [HR], 2.634; 95% CI, 1.845–3.761; and metastases HR, 8.558; 95% CI, 7.367–9.942). Baseline factors with strong negative prognostic value (HRs >2) included poor histological response (≥10% viable tumor), axial tumor location, and the presence of lung metastases. The effect of poor versus good histological response changed over time, becoming nonsignificant 3.25 years after surgery and onward.
The German COSS searched their database of 5,503 patients with osteosarcoma who were registered between 1980 and 2019. They identified 2,009 patients surviving more than 5 years from diagnostic biopsy to assess prognostic factors for long-term survival.[52] The authors confirmed the known predictors of treatment failure, including lower necrosis after initial chemotherapy, older age at diagnosis, unfavorable tumor site, and presentation as a secondary malignancy. The OS rates beyond 5 years were reported (see Table 1).
COSS = Cooperative Osteosarcoma Study Group; No. = number; OS = overall survival. | ||||
Additional follow-up | 5 y | 10 y | 15 y | 20 y |
No. of patients analyzed at each time interval | 161 | 808 | 288 | 125 |
OS rate | 91.7% | 88.9% | 85.8% | 83.4% |
In a multivariate analysis, the factors that retained significance for worse long-term survival included having a recurrence in years 1 to 5, older age at diagnosis, and presentation as a secondary malignancy. Extent of tumor necrosis after initial chemotherapy was no longer valid after 5 years of follow-up.[52]
Other possible prognostic factors
Other factors that may be prognostic but with either limited or conflicting data include the following:
- Subsequent neoplasms. Patients with osteosarcoma as a subsequent neoplasm, including tumors arising in a radiation field, share the same prognosis as patients with de novo osteosarcoma if they are treated aggressively with complete surgical resection and multiagent chemotherapy.[53,54]
In a German series, approximately 25% of patients with craniofacial osteosarcoma had osteosarcoma as a second tumor, and in 8 of these 13 patients, osteosarcoma arose after treatment for retinoblastoma. In this series, there was no difference in outcome for primary or secondary craniofacial osteosarcoma.[17]
- Laboratory abnormalities. Possible prognostic factors identified for patients with conventional localized high-grade osteosarcoma include LDH level, alkaline phosphatase level, and histological subtype.[30,46,49,55,56,57,58]
- Body mass index. Higher body mass index at initial presentation is associated with worse OS.[59]
- Pathological fracture. Some studies have suggested that a pathological fracture at diagnosis or during preoperative chemotherapy does not have adverse prognostic significance.[6]; [60,61][Level of evidence C1]; [62][Level of evidence C2]
However, a systematic review of nine cohort studies examined the impact of pathological fractures on outcome in patients with osteosarcoma. The review included 2,187 patients, 311 of whom had a pathological fracture. The presence of a pathological fracture correlated with decreased EFS and OS.[63] In two additional series, a pathological fracture at diagnosis was associated with a worse overall outcome.[64]; [65][Level of evidence C1] A retrospective analysis of 2,847 patients with osteosarcoma from the German COSS identified 321 patients (11.3%) with a pathological fracture before the initiation of systemic therapy.[66][Level of evidence C1] In pediatric patients, OS and EFS did not differ significantly between patients with and without a pathological fracture. In adults, the 5-year OS rate in patients with a pathological fracture was 46% versus 69% for patients without a pathological fracture (P < .001). The 5-year EFS rate in adults was 36% for patients with a pathological fracture versus 56% for patients without a pathological fracture (P < .001). In a multivariable analysis, the presence of a pathological fracture was not a statistically significant factor for OS or EFS in the total cohort or in pediatric patients. In adult patients, presence of a pathological fracture remained an independent prognostic factor for OS (HR, 1.893; P = .013).
- Time to definitive surgery. In a large series, a delay of 21 days or longer from the time of definitive surgery to the resumption of chemotherapy was an adverse prognostic factor.[67]
- Genetic factors.
- ERBB2 expression. There are conflicting data concerning the prognostic significance of this human epidermal growth factor.[68,69,70]
- Tumor cell ploidy.[71]
- Specific chromosomal gains or losses.[72]
- Loss of heterozygosity of the RB1 gene.[73,74]
- Loss of heterozygosity of the TP53 locus.[75]
- Increased expression of p-glycoprotein.[76,77] A prospective analysis of p-glycoprotein expression determined by immunohistochemistry failed to identify prognostic significance for patients with newly diagnosed osteosarcoma, although earlier studies suggested that overexpression of p-glycoprotein predicted poor outcome.[78]
For more information, see the Genomics of Osteosarcoma section.
References:
- National Cancer Institute: NCCR*Explorer: An interactive website for NCCR cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed August 23, 2024.
- Bacci G, Longhi A, Bertoni F, et al.: Primary high-grade osteosarcoma: comparison between preadolescent and older patients. J Pediatr Hematol Oncol 27 (3): 129-34, 2005.
- Bacci G, Balladelli A, Palmerini E, et al.: Neoadjuvant chemotherapy for osteosarcoma of the extremities in preadolescent patients: the Rizzoli Institute experience. J Pediatr Hematol Oncol 30 (12): 908-12, 2008.
- Link MP, Goorin AM, Miser AW, et al.: The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314 (25): 1600-6, 1986.
- Link MP: The multi-institutional osteosarcoma study: an update. Cancer Treat Res 62: 261-7, 1993.
- Bacci G, Ferrari S, Longhi A, et al.: Nonmetastatic osteosarcoma of the extremity with pathologic fracture at presentation: local and systemic control by amputation or limb salvage after preoperative chemotherapy. Acta Orthop Scand 74 (4): 449-54, 2003.
- Bernthal NM, Federman N, Eilber FR, et al.: Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer 118 (23): 5888-93, 2012.
- Fletcher CDM, Bridge JA, Hogendoorn P, et al., eds.: WHO Classification of Tumours of Soft Tissue and Bone. 4th ed. IARC Press, 2013.
- Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014.
- Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed September 5, 2024.
- Isakoff MS, Bielack SS, Meltzer P, et al.: Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J Clin Oncol 33 (27): 3029-35, 2015.
- Pakos EE, Nearchou AD, Grimer RJ, et al.: Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur J Cancer 45 (13): 2367-75, 2009.
- Donati D, Giacomini S, Gozzi E, et al.: Osteosarcoma of the pelvis. Eur J Surg Oncol 30 (3): 332-40, 2004.
- Andreou D, Bielack SS, Carrle D, et al.: The influence of tumor- and treatment-related factors on the development of local recurrence in osteosarcoma after adequate surgery. An analysis of 1355 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. Ann Oncol 22 (5): 1228-35, 2011.
- Isakoff MS, Barkauskas DA, Ebb D, et al.: Poor survival for osteosarcoma of the pelvis: a report from the Children's Oncology Group. Clin Orthop Relat Res 470 (7): 2007-13, 2012.
- Ozaki T, Flege S, Kevric M, et al.: Osteosarcoma of the pelvis: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol 21 (2): 334-41, 2003.
- Jasnau S, Meyer U, Potratz J, et al.: Craniofacial osteosarcoma Experience of the cooperative German-Austrian-Swiss osteosarcoma study group. Oral Oncol 44 (3): 286-94, 2008.
- Laskar S, Basu A, Muckaden MA, et al.: Osteosarcoma of the head and neck region: lessons learned from a single-institution experience of 50 patients. Head Neck 30 (8): 1020-6, 2008.
- Kassir RR, Rassekh CH, Kinsella JB, et al.: Osteosarcoma of the head and neck: meta-analysis of nonrandomized studies. Laryngoscope 107 (1): 56-61, 1997.
- Patel SG, Meyers P, Huvos AG, et al.: Improved outcomes in patients with osteogenic sarcoma of the head and neck. Cancer 95 (7): 1495-503, 2002.
- Smith RB, Apostolakis LW, Karnell LH, et al.: National Cancer Data Base report on osteosarcoma of the head and neck. Cancer 98 (8): 1670-80, 2003.
- Fernandes R, Nikitakis NG, Pazoki A, et al.: Osteogenic sarcoma of the jaw: a 10-year experience. J Oral Maxillofac Surg 65 (7): 1286-91, 2007.
- Smeele LE, Kostense PJ, van der Waal I, et al.: Effect of chemotherapy on survival of craniofacial osteosarcoma: a systematic review of 201 patients. J Clin Oncol 15 (1): 363-7, 1997.
- Ha PK, Eisele DW, Frassica FJ, et al.: Osteosarcoma of the head and neck: a review of the Johns Hopkins experience. Laryngoscope 109 (6): 964-9, 1999.
- Duffaud F, Digue L, Baciuchka-Palmaro M, et al.: Osteosarcomas of flat bones in adolescents and adults. Cancer 88 (2): 324-32, 2000.
- Canadian Society of Otolaryngology-Head and Neck Surgery Oncology Study Group: Osteogenic sarcoma of the mandible and maxilla: a Canadian review (1980-2000). J Otolaryngol 33 (3): 139-44, 2004.
- Guadagnolo BA, Zagars GK, Raymond AK, et al.: Osteosarcoma of the jaw/craniofacial region: outcomes after multimodality treatment. Cancer 115 (14): 3262-70, 2009.
- McHugh JB, Thomas DG, Herman JM, et al.: Primary versus radiation-associated craniofacial osteosarcoma: Biologic and clinicopathologic comparisons. Cancer 107 (3): 554-62, 2006.
- Goldstein-Jackson SY, Gosheger G, Delling G, et al.: Extraskeletal osteosarcoma has a favourable prognosis when treated like conventional osteosarcoma. J Cancer Res Clin Oncol 131 (8): 520-6, 2005.
- Bielack SS, Kempf-Bielack B, Delling G, et al.: Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20 (3): 776-90, 2002.
- Smeland S, Bielack SS, Whelan J, et al.: Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer 109: 36-50, 2019.
- Meyers PA, Schwartz CL, Krailo M, et al.: Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 23 (9): 2004-11, 2005.
- Harris MB, Gieser P, Goorin AM, et al.: Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol 16 (11): 3641-8, 1998.
- Bacci G, Rocca M, Salone M, et al.: High grade osteosarcoma of the extremities with lung metastases at presentation: treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol 98 (6): 415-20, 2008.
- Sajadi KR, Heck RK, Neel MD, et al.: The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop Relat Res (426): 92-6, 2004.
- Kager L, Zoubek A, Kastner U, et al.: Skip metastases in osteosarcoma: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol 24 (10): 1535-41, 2006.
- American Joint Committee on Cancer: AJCC Cancer Staging Manual. 6th ed. Springer, 2002.
- Bacci G, Fabbri N, Balladelli A, et al.: Treatment and prognosis for synchronous multifocal osteosarcoma in 42 patients. J Bone Joint Surg Br 88 (8): 1071-5, 2006.
- Longhi A, Fabbri N, Donati D, et al.: Neoadjuvant chemotherapy for patients with synchronous multifocal osteosarcoma: results in eleven cases. J Chemother 13 (3): 324-30, 2001.
- Goorin AM, Shuster JJ, Baker A, et al.: Changing pattern of pulmonary metastases with adjuvant chemotherapy in patients with osteosarcoma: results from the multiinstitutional osteosarcoma study. J Clin Oncol 9 (4): 600-5, 1991.
- Bacci G, Mercuri M, Longhi A, et al.: Grade of chemotherapy-induced necrosis as a predictor of local and systemic control in 881 patients with non-metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution. Eur J Cancer 41 (14): 2079-85, 2005.
- DeLaney TF, Park L, Goldberg SI, et al.: Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys 61 (2): 492-8, 2005.
- Kim MS, Cho WH, Song WS, et al.: time dependency of prognostic factors in patients with stage II osteosarcomas. Clin Orthop Relat Res 463: 157-65, 2007.
- Link MP, Goorin AM, Horowitz M, et al.: Adjuvant chemotherapy of high-grade osteosarcoma of the extremity. Updated results of the Multi-Institutional Osteosarcoma Study. Clin Orthop (270): 8-14, 1991.
- Winkler K, Beron G, Delling G, et al.: Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol 6 (2): 329-37, 1988.
- Meyers PA, Heller G, Healey J, et al.: Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 10 (1): 5-15, 1992.
- Bielack S, Jürgens H, Jundt G, et al.: Osteosarcoma: the COSS experience. Cancer Treat Res 152: 289-308, 2009.
- Bishop MW, Chang YC, Krailo MD, et al.: Assessing the Prognostic Significance of Histologic Response in Osteosarcoma: A Comparison of Outcomes on CCG-782 and INT0133-A Report From the Children's Oncology Group Bone Tumor Committee. Pediatr Blood Cancer 63 (10): 1737-43, 2016.
- Janeway KA, Barkauskas DA, Krailo MD, et al.: Outcome for adolescent and young adult patients with osteosarcoma: a report from the Children's Oncology Group. Cancer 118 (18): 4597-605, 2012.
- Collins M, Wilhelm M, Conyers R, et al.: Benefits and adverse events in younger versus older patients receiving neoadjuvant chemotherapy for osteosarcoma: findings from a meta-analysis. J Clin Oncol 31 (18): 2303-12, 2013.
- Spreafico M, Hazewinkel AD, Gelderblom H, et al.: Dynamic Prediction of Overall Survival for Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data. Curr Oncol 31 (7): 3630-3642, 2024.
- Fernandes JS, Blattmann C, Hecker-Nolting S, et al.: Beyond 5-year survival. A report from the Cooperative Osteosarcoma Study Group (COSS). Cancer Med 13 (1): e6893, 2024.
- Tabone MD, Terrier P, Pacquement H, et al.: Outcome of radiation-related osteosarcoma after treatment of childhood and adolescent cancer: a study of 23 cases. J Clin Oncol 17 (9): 2789-95, 1999.
- Bielack SS, Blattmann C, Hassenpflug W, et al.: Osteosarcoma Arising After Ewing Sarcoma or Vice Versa: A Report of 20 Affected Patients from the Cooperative Osteosarcoma Study Group (COSS). Anticancer Res 43 (11): 4975-4981, 2023.
- Bacci G, Longhi A, Versari M, et al.: Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 106 (5): 1154-61, 2006.
- Bieling P, Rehan N, Winkler P, et al.: Tumor size and prognosis in aggressively treated osteosarcoma. J Clin Oncol 14 (3): 848-58, 1996.
- Ferrari S, Bertoni F, Mercuri M, et al.: Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann Oncol 12 (8): 1145-50, 2001.
- Kager L, Zoubek A, Dominkus M, et al.: Osteosarcoma in very young children: experience of the Cooperative Osteosarcoma Study Group. Cancer 116 (22): 5316-24, 2010.
- Altaf S, Enders F, Jeavons E, et al.: High-BMI at diagnosis is associated with inferior survival in patients with osteosarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 60 (12): 2042-6, 2013.
- Kim MS, Lee SY, Lee TR, et al.: Prognostic effect of pathologic fracture in localized osteosarcoma: a cohort/case controlled study at a single institute. J Surg Oncol 100 (3): 233-9, 2009.
- Xie L, Guo W, Li Y, et al.: Pathologic fracture does not influence local recurrence and survival in high-grade extremity osteosarcoma with adequate surgical margins. J Surg Oncol 106 (7): 820-5, 2012.
- Chung LH, Wu PK, Chen CF, et al.: Pathological fractures in predicting clinical outcomes for patients with osteosarcoma. BMC Musculoskelet Disord 17 (1): 503, 2016.
- Sun L, Li Y, Zhang J, et al.: Prognostic value of pathologic fracture in patients with high grade localized osteosarcoma: a systemic review and meta-analysis of cohort studies. J Orthop Res 33 (1): 131-9, 2015.
- Bramer JA, Abudu AA, Grimer RJ, et al.: Do pathological fractures influence survival and local recurrence rate in bony sarcomas? Eur J Cancer 43 (13): 1944-51, 2007.
- Schlegel M, Zeumer M, Prodinger PM, et al.: Impact of Pathological Fractures on the Prognosis of Primary Malignant Bone Sarcoma in Children and Adults: A Single-Center Retrospective Study of 205 Patients. Oncology 94 (6): 354-362, 2018.
- Kelley LM, Schlegel M, Hecker-Nolting S, et al.: Pathological Fracture and Prognosis of High-Grade Osteosarcoma of the Extremities: An Analysis of 2,847 Consecutive Cooperative Osteosarcoma Study Group (COSS) Patients. J Clin Oncol 38 (8): 823-833, 2020.
- Imran H, Enders F, Krailo M, et al.: Effect of time to resumption of chemotherapy after definitive surgery on prognosis for non-metastatic osteosarcoma. J Bone Joint Surg Am 91 (3): 604-12, 2009.
- Gorlick R, Huvos AG, Heller G, et al.: Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 17 (9): 2781-8, 1999.
- Onda M, Matsuda S, Higaki S, et al.: ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer 77 (1): 71-8, 1996.
- Kilpatrick SE, Geisinger KR, King TS, et al.: Clinicopathologic analysis of HER-2/neu immunoexpression among various histologic subtypes and grades of osteosarcoma. Mod Pathol 14 (12): 1277-83, 2001.
- Look AT, Douglass EC, Meyer WH: Clinical importance of near-diploid tumor stem lines in patients with osteosarcoma of an extremity. N Engl J Med 318 (24): 1567-72, 1988.
- Ozaki T, Schaefer KL, Wai D, et al.: Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer 102 (4): 355-65, 2002.
- Feugeas O, Guriec N, Babin-Boilletot A, et al.: Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol 14 (2): 467-72, 1996.
- Heinsohn S, Evermann U, Zur Stadt U, et al.: Determination of the prognostic value of loss of heterozygosity at the retinoblastoma gene in osteosarcoma. Int J Oncol 30 (5): 1205-14, 2007.
- Goto A, Kanda H, Ishikawa Y, et al.: Association of loss of heterozygosity at the p53 locus with chemoresistance in osteosarcomas. Jpn J Cancer Res 89 (5): 539-47, 1998.
- Serra M, Pasello M, Manara MC, et al.: May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol 29 (6): 1459-68, 2006.
- Pakos EE, Ioannidis JP: The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer 98 (3): 581-9, 2003.
- Schwartz CL, Gorlick R, Teot L, et al.: Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children's Oncology Group. J Clin Oncol 25 (15): 2057-62, 2007.